\[\begin{array}{*{20}{l}}{\bar \vartheta = \frac{1}{{\Delta a}} \cdot \int\limits_a^{a + \Delta a} {\vartheta \cdot da = } \frac{1}{{\Delta a}} \cdot \left( {F(a + \Delta a) - F(a)} \right)}\\{\mathop {\lim }\limits_{\Delta a \to 0} \frac{{F(a + \Delta s) - F(a)}}{{\Delta a}} = \frac{{dF}}{{da}} = \vartheta = \bar \vartheta }\end{array}\]
\[{\vartheta _V}\] | Vorlauftemperatur |
\[\vartheta \] | Rücklauftemperatur variabel (blau) |
\[\bar \vartheta \] | mittlere Temperatur (Vor- und Rücklauf) |
\[{\vartheta _R}\] | Rücklauftemperatur |
\[{\vartheta _L}\] | Umgebungstemperatur (grün) |
A | Heizkörperfläche |
a | Heizkörperfläche variabel |
\[\begin{array}{l}\dot Q(\dot m,\vartheta ,\bar \vartheta ,{\vartheta _L},A)\\d\dot Q = \frac{{\partial \dot Q}}{{\partial \dot m}}d\dot m + \frac{{\partial \dot Q}}{{\partial \vartheta }}d\vartheta + \frac{{\partial \dot Q}}{{\partial \bar \vartheta }}d\bar \vartheta + \frac{{\partial \dot Q}}{{\partial {\vartheta _L}}}d{\vartheta _L} + \frac{{\partial \dot Q}}{{\partial a}}da\end{array}\]
\[\begin{array}{l}{\rm{Ansatz:}}\\\dot Q = \dot m \cdot c \cdot ({\vartheta _V} - \vartheta ) = U \cdot (\bar \vartheta - {\vartheta _L}) \cdot a\\\frac{{d\dot Q}}{{da}} = \dot m \cdot c \cdot ( - \frac{{d\vartheta }}{{da}}) = U \cdot (\bar \vartheta - {\vartheta _L}) \cdot \frac{{da}}{{da}}\\\\\bar \vartheta = \mathop {\lim }\limits_{\Delta \vartheta \to 0} \frac{1}{2}((\vartheta + \frac{1}{2}\Delta \vartheta ) + (\vartheta - \frac{1}{2}\Delta \vartheta )) = \vartheta \\\\d\dot Q = - \dot m \cdot c \cdot d\vartheta = U \cdot (\vartheta - {\vartheta _L}) \cdot da\\\int\limits_{{\vartheta _V}}^\vartheta {\frac{{d\vartheta }}{{\vartheta - {\vartheta _L}}} = - \frac{U}{{\dot m \cdot c}}\int\limits_0^a {da} } \\\\\vartheta = {\vartheta _L} + ({\vartheta _V} - {\vartheta _L}) \cdot {e^{ - \frac{{U \cdot a}}{{\dot m \cdot c}}}}\\\\{\rm{Massenstrom}}\,\,{\rm{\dot m }}\,{\rm{ist}}\,\,{\rm{unveraendert}}\\a = 0 \Rightarrow \vartheta = {\vartheta _V}\\a = A \Rightarrow \vartheta = {\vartheta _R}\\\\{\rm{Flaeche}}\,\,{\rm{A }}\,\,{\rm{ist }}\,\,{\rm{unveraendert}}\\\dot m = 0 \Rightarrow \vartheta = {\vartheta _R} = {\vartheta _L}\\\dot m \to \infty \Rightarrow \vartheta \to {\vartheta _V}\end{array}\]
Durch Umformen der Gleichung
\[\dot Q(\vartheta ) = \dot m \cdot c \cdot ({\vartheta _V} - \vartheta ) = A \cdot U \cdot {\left( {\frac{{{\vartheta _V} - \vartheta }}{{\ln (\frac{{{\vartheta _V} - {\vartheta _L}}}{{\vartheta - {\vartheta _L}}})}}} \right)^n}\]
nach der Temperatur ergibt sich denn wieder für n = 1 die gesuchte Gleichung.
Wegen des Wärmeüberganges ist der U-Wert ist ebenfalls von der Strömungsgeschwindigkeit (Massenstrom) abhängig; allerdings wird dieser in den Berechnungen als Konstante angenommen.
\[\dot Q(\vartheta ) = \dot m \cdot c \cdot ({\vartheta _V} - \vartheta ) = A \cdot U \cdot {\left( {\frac{{{\vartheta _V} - \vartheta }}{{\ln (\frac{{{\vartheta _V} - {\vartheta _L}}}{{\vartheta - {\vartheta _L}}})}}} \right)^n}\]
\[{\vartheta _V} = 75^\circ C\,\,\,{\vartheta _L} = 20^\circ C\,\,\,c = \frac{{W \cdot h}}{{kg \cdot K}}\,\,\,\,U\,in\,\frac{W}{{{m^2} \cdot {K^n}}}\,\,\,n = 1,3\,\,\,\dot m = 50\frac{{kg}}{h}\,\,A = 1{m^2}\]